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How well can an ensemble predict the uncertainty in 
the location of winter storm precipitation?
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(Manuscript received 3 October 2017; in final form 11 February 2018)

ABSTRACT
A pair of morphing-based ensemble forecast diagnostics is proposed for the verification of the location of precipitation 
events. The diagnostics are applied to operational global ensemble forecasts of winter storms in the United States in 
the winters of 2014/2015 and 2015/2016. A slowly developing systematic error is found to lead to an unrealistically 
fast eastward propagation of the storms in the week-two forecasts. Apart from this systematic error, the forecasts 
predict the uncertainty in the location of the precipitation events reliably. They, however, also grossly underestimate 
the uncertainty of the amount of precipitation in the short (shorter than 5 days) forecast range.

Keywords: ensemble verification, precipitation, morphing, winter storm

1. Introduction

The predictability of a chaotic dynamical system is measured 
by the temporal growth of the magnitude of the errors in pre-
dictions of the system. For an Eulerian scalar state variable of 
a spatio-temporally chaotic system, the standard measure of 
the magnitude of the prediction error is the root-mean-square 
(rms) error, with the mean taken over the spatial domain of 
the system. The use of the rms error as the measure of predic-
tion error, however, is problematic for a scalar state variable 
of sharp gradients, because for such a variable, the rms error 
indicates a rapid loss of predictability once the dominant fea-
tures of the field become slightly misplaced. Intuition suggests 
that a proper error measure should indicate that the error is a 
small displacement of the dominant features. More generally, 
the measure should provide information about the magnitude of 
the displacement error, and also the errors in the amplitude and 
spatial structure of the dominant features.

An example for a scalar field of the aforementioned type is 
the precipitation field associated with an extratropical or tropi-
cal cyclone, whose evolution is driven by the spatio-temporally 
chaotic, multi-scale dynamics of the atmosphere, which organ-
izes it into bands with sharp boundaries and a rich and rapidly 
changing structure within the bands (Fig. 1). If the precipita-
tion bands are slightly misplaced in a forecast, the rms error 
indicates poor forecast quality, even if the precipitation field is 
otherwise well predicted.

The error in the prediction of a precipitation event can be 
characterized, at minimum, by three error components: the  

errors in the location, amplitude (amount) and structure of the 
predicted precipitation (e.g. Wernli et al., 2008). Motivated by 
the work of Keil and Craig (2007, 2009) on morphing-based pre-
cipitation verification techniques and a series of papers on digi-
tal image quality measures (Wang and Bovik, 2002; Wang et al., 
2004; Wang and Bovik, 2009), we have developed a technique to 
estimate the three error components in deterministic precipitation 
forecasts (Han and Szunyogh, 2016, 2017). The goal of the pres-
ent study is to extend our technique for the estimation of the loca-
tion error component to ensemble forecasts. In particular, we de-
rive diagnostics for the estimation of the systematic location error 
and the verification of the “spread-skill relationship” (e.g. Buizza, 
1997) for the location. We apply the two diagnostics to opera-
tional global ensemble forecasts of the 32 United States winter 
storms that were named by The Weather Channel in the winters of 
2014/2015 and 2015/2016.1 We note that a recent study (Greybush 
et al., 2017) based on the examination of forecasts of two of the 
storms from the same winters showed the importance of using the 
ensemble approach for the prediction of winter storms.

2. Methodology

We assume that the location of a precipitation event can be de-
scribed by a two-dimensional vector of location r. While the 
verification technique we propose does not require the knowl-
edge or estimation of r, the assumption that the position of the 
event can be described by a single location r makes its justi-
fication more transparent.2 Because we consider r a random 
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We use the technique of Han and Szunyogh (2017) to first 
find a shift vector dX

k
(m, t

f
) =

(
dUk

(m, t
f
), dV k

(m, t
f
)
)
 for each 

ensemble member k, forecast case m and lead time t
f
 that cor-

rects the location error. (dUk(m, t
f
) and dVk(m, t

f
) are the zonal 

and meridional component of dX
k
(m, t

f
), respectively.) For-

mally, the shift vector that “corrects the location error” is the 
vector that shifts Pk(m, t

f
) such that it maximizes the similarity 

between Pa(m) and the shifted Pk(m, t
f
) field, Pk

shift
(m, t

f
). We 

think of dX
k
(m, t

f
) as the difference between the location r

a
(m) 

of the verifying precipitation feature and the predicted location 
r

k

f
(m, t

f
) (k = 1, 2,… , K) of the same feature in ensemble mem-

ber k, that is,
 

We measure the similarity between Pa(m) and Pk

shifted
(m, t

f
) by 

the Amplitude and Structural Similarity Index Measure (AS-
SIM) (Han and Szunyogh, 2017), which is an adaptation of 
the Structural Similarity Index Measure (SSIM) of Wang et 
al. (2004) and Wang and Bovik (2009). We choose the free 
parameters of the measure such that it gives equal weights to 
the similarity of the amplitude, the similarity of the spatial 
variability and the point-wise correlation of the two fields. 
ASSIM takes a value in the closed interval [0, 1], with one 
indicating identical fields and a lower value indicating less 
similarity between the two fields. We assume that the precipi-
tation feature of ensemble member k “may be related to” win-
ter storm m, if ASSIM for Pa(m) and Pk

shift
(m, t

f
) is equal to, 

or larger than a prescribed threshold value a. K ′
(
m, t

f

)
 there-

fore is the number of ensemble members for forecast case 
m(m = 1, 2,… , M) and forecast lead time t

f
 for which ASSIM 

is larger than a.

(1)dX
k
(
m, t

f

)
= r

a
(m) − r

k

f

(
m, t

f

)
, k = 1, 2,… , K .

variable, the position r
a
 of the event in the verifying analysis 

is a realization of r. Likewise, the positions rk

f
 (k = 1, 2… , K) 

of the event in the K forecast ensemble members are also real-
izations of r.

Consider a set of verification cases, in which subsets of cases 
may be related to the same weather event at different verifi-
cation times. Let M be the total number of verification cases. 
For each verification case m(m = 1, 2, …, M), we consider all 
ensemble forecasts from an archived data-set that are valid at 
the (verification) time of the case. While there are different lead 
time forecasts for each case, not all ensemble members predict 
a storm at each lead time. We therefore introduce the notation 
K ′

(
m, t

f

)
, K ′

(
m, t

f

)
≤ K, for the number of ensemble members 

that at lead time t
f
 include a precipitation event that may be 

related to winter storm m(m = 1, 2,… , M). (We will give a for-
mal definition of “may be related” shortly.) Our goal is to verify 
the ensemble-based prediction of the mean and standard devia-
tion of the conditional probability distribution of r subject to the 
condition that the forecast verification feature may be related to 
an observed winter storm.

Our task has two parts. First, we have to identify the en-
semble members that include a precipitation event that may 
be related to a verifying event. Second, we have to verify the 
ensemble-based estimates of the statistical parameters of the 
conditional probability distribution of r for the collection of 
cases that we identify. The only information available to us at 
the beginning of the process is the knowledge of the fields of 
verifying precipitation data Pa

(m)(m = 1, 2,… , M) in a search 
region, which is selected such that the verifying event is at 
about its centre, and the related K-member ensembles of fore-
cast precipitation fields Pk

(
m, t

f

)
(k = 1, 2,… , K).

Fig. 1. An example of a slightly misplaced forecast precipitation field.
Notes: The forecast field (left) is the 24-h forecast of the 1-h accumulated precipitation starting at 0000 UTC 1 June 2005 and the verifying analysis 
field (right) is the 1-h accumulated Stage II precipitation analysis. In the left panel, the grey shades indicate the contours of the verifying precipitation 
field.
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We expect K ′
(
m, t

f

)
 to be a monotonically decreasing func-

tion of the forecast lead time t
f
 and require that K ′

(
m, t

f

)
≥ 2 

for all forecast cases used in the computation of the diagnostics 
at t

f
. We denote the number of forecast cases that satisfy the 

latter condition by M ′
(
t
f

)
. Estimates of the statistics based on 

such small ensemble sizes can be included in the diagnostics, 
because while the sampling errors (the estimation errors due 
to a small ensemble) can be large for a particular case m and 
lead time t

f
, the expected value and the standard deviation of 

the sampling errors are known from the theory of statistics even 
for such small sample sizes. In particular, if the ensemble mem-
bers r

k

f
(k = 1, 2,… , K �

) sample the true distribution of r, the 
ensemble average

 

estimates the (unknown) true mean r̄ = E[r] of the distribution 
with an error
 

whose mean is
 

and mean-square is
 

Here,
 

is the (unknown) true variance of r. Hereafter, E[⋅] denotes the 
expected value of the random variable in the brackets. In our 
proposed diagnostics, this expected value is estimated by an av-
erage over the M ′

(
t
f

)
 verification cases.

Taking the ensemble mean of Equation (1) yields
 

where
 

According to Equation (7), dX =

(
dU, dV

)
 is the difference 

between a realization r
a
 of r and the prediction r

f
 of the mean r̄. 

Equation (7) can also be written in the equivalent form
 

where
 

(2)r
f
=

1

K �

K
�∑

k=1

r
k

f

(3)b
loc

= r̄ − r
f
,

(4)
E[b

loc
] = 0,

(5)E
[(

b
loc

)2
]
= E

[(
b

loc
− E

[
b

loc

])2
]
=

1

K �
Σ

2

loc
.

(6)
Σ

2

loc
= E

[
(r − r̄)

2
]

(7)dX
(
m, t

f

)
= r

a
(m) − r

f

(
m, t

f

)
,

(8)dX
(
m, t

f

)
=

1

K �
(
m, t

f

)
K

�∑
k=1

dX
k
(
m, t

f

)
.

(9)dX
(
m, t

f

)
= �

loc

(
m, t

f

)
+ b

loc

(
m, t

f

)
,

(10)𝝐
loc

(
m, t

f

)
= r

a
(m) − r̄

(
m, t

f

)

is a realization of the random variable r − r̄, which we call the 
location uncertainty. Notice that �2

loc
 describes the magnitude 

of the location uncertainty (see Equation 6).
Ideally, the ensemble should sample the true probability dis-

tribution of the forecast variables given all sources of forecast 
uncertainty. Because this property cannot be verified directly 
(Talagrand et al., 1999), ensemble verification techniques ex-
amine necessary conditions for it. We follow this approach by 
deriving diagnostic equations that the ensemble forecasts would 
satisfy at forecast lead time t

f
, if the ensemble sampled the true 

probability distribution of the forecast uncertainty.

2.1. Location bias

Because r
a
 is a realization of r,

 

and the expected value of Equation (9) is
 

Hence, the estimate
 

of the right-hand side of Equation (12) is also an estimate of 
the location bias E

[
b

loc

]
(t

f
). �

loc

(
t
f

)
 is an unbiased estimate of 

the location bias, because Equation (4) also applies if b
loc

 is 
replaced by dX

(
m, t

f

)
.

2.2. Spread–skill relationship

The spread–skill relationship diagnostic of ensemble forecast-
ing takes advantage of the statistical relationship between the 
ensemble variance and the difference between the verifying 
data and the ensemble mean: the expected value of the ensem-
ble variance and the expected value of the square of the dif-
ference between the verifying data and the ensemble mean are 
both estimates of �2

loc
. Our goal is to formally express this rela-

tionship with the help of the ensemble of shift vectors.
Making use of Equations (1) and (7) yields
 

Thus, the expected value of the ensemble variance of the loca-
tion can be expressed by the expected value of the ensemble 
variance of the shift vectors as
 

(11)E
[
𝝐

loc

](
m, t

f

)
= E

[
r

a
− r̄

](
m, t

f

)
= 0,

(12)E
[
b

loc

](
m, t

f

)
= E

[
dX

](
m, t

f

)
.

(13)

�
loc

(
t
f

)
=

1

M �
(
t
f

)
M∑

m = 1

K �
(
m, t

f

)
≥ 2

dX
(
m, t

f

)

(14)

(
r

k

f
− r

f

)2(
m, t

f

)
=

(
r

a
− dX

k
+ dX − r

a

)2(
m, t

f

)

=

(
dX

k
− dX

)2(
m, t

f

)
.

(15)

E

[
1

K �
− 1

K
�∑

k=1

(
r

k

f
− r

f

)2

](
t
f

)
= E

[
1

K �
− 1

K
�∑

k=1

(
dX − dX

k
)2

](
t
f

)
.
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skill” (mean-square error) of the ensemble mean forecast. The 
expected values in Equation (20) can be estimated by taking 
averages over the sample of M forecast cases. That is,
 

is an estimate of the left-hand side and
 

is an estimate of the right-hand side of Equation (20). The fac-
tor K′/(K′ + 1) on the right-hand side of Equation (20) may seem 
unusual, because in the ensemble forecasting literature the ef-
fects of sampling errors caused by the limited number of en-
semble members on the spread–skill relationship is rarely con-
sidered. The omission of the normalization factor introduces 
only small errors into the estimate of the “skill” for the typical 
number (>20) of ensemble members (Fig. 2). What makes our 
situation special is that we allow for such small values of K′ as 
2, for which the normalization factor is K′/(K′ + 1) = 2/3 ≈ 0.67, 
which is significantly smaller than 1.

There is one additional issue that can affect the spread–skill re-
lationship in the specific case of our morphing based verification 
technique, even if the ensemble correctly samples the true proba-
bility distribution: because the size of the search region limits the 
magnitude of the location error that the technique of Han and Szu-
nyogh (2017) can detect, rk

f
− r

f
 and r

a
− r

f
 is not always able to 

fully sample the tails of the probability distribution of the forecast 

(21)

�
2

loc

�
t
f

�
=

1

M �
�
t
f

�
M�

m = 1

K �
�
m, t

f

�
≥ 2

⎡
⎢⎢⎣

1

K �
�
m, t

f

�
− 1

K
�(m,t

f )�
k=1

�
dX

k
�
m, t

f

�
− dX

�
m, t

f

��2
⎤⎥⎥⎦

(22)

�
2

loc

(
t
f

)
=

1

M �
(
t
f

)
M∑

m = 1

K �
(
m, t

f

)
≥ 2

[
K �

(
m, t

f

)

K �
(
m, t

f

)
+ 1

dX
2(

m, t
f

)]

The expected value of the square of the difference between the 
verifying data and the ensemble mean can be expressed with 
the help of the shift vectors by taking the expected value of the 
square of Equation (7), which leads to
 

In addition,
 

Because at this point we assume that the estimation error b
loc

 
of the mean r̄ is purely due to sampling errors, making use of 
Equations (5) and (6) leads to
 

First, combining Equations (17) and (18) and then making use 
of Equation (16) yields
 

Because the left-hand side of Equation (15) is a prediction-based 
estimate of �2

loc
, for a perfectly formulated ensemble, the right-

hand side of Equation (15) would be equal to the right-hand 
side of Equation (19); that is, we would find that
 

The left-hand side is the “ensemble spread” of the forecast 
location and the right-hand side is the deterministic “forecast 

(16)E
[(

r
a
− r

f

)2
](

t
f

)
= E

[
dX

2
](

t
f

)
.

(17)

E
[(

r
a
− r

f

)2
](

t
f

)
= E

[(
r − r

f

)2
](

t
f

)
= E

[(
(r − r̄) + b

loc

)2
](

t
f

)
.

(18)

E
[(
(r − r̄) + b

loc

)2
](

t
f

)
= Σ

2

loc

(
t
f

)
+ E

[(
b

loc

)2
](

t
f

)
=

K �
+ 1

K �
Σ

2

loc

(
t
f

)
.

(19)Σ
2

loc

(
t
f

)
= E

[
K �

K �
+ 1

(
r

a
− r

f

)2

](
t
f

)
= E

[
K �

K �
+ 1

dX
2
](

t
f

)
.

(20)E

[
1

K �
− 1

K
�∑

k=1

(
dX

k
− dX

)2

](
t
f

)
= E

[
K �

K �
+ 1

dX
2
](

t
f

)
.

Fig. 2. Illustration of the effect of the normalization factor K′/(K′ + 1) on the ratio of the estimates of the right- and left-hand sides of Equation (20).

Notes: The values shown are based on randomly generated samples of 10, 000 realizations of r, r
a
, rk

f
, k = 1,… , K �, assuming a Gaussian random 

distribution with mean r̄ = 0. Because of the sampling fluctuations, the simulation is repeated 10 times for each value of K′ and the results are shown 
by scatter-plots.
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This equation can be obtained by noticing that in the presence 
of bias, Equation (5) becomes
 

thus leading to the modified version
 

of Equation (20). It is important to notice that Equation (23) ac-
counts only for the systematic part of the error in the prediction 

(23)

�
2

loc

�
t
f

�
=

1

M �
�
t
f

�
M�

m = 1

K �
�
m, t

f

�
≥ 2

�
K �

�
m, t

f

�

K �
�
m, t

f

�
+ 1

dX
2�

m, t
f

��

−

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

M �
�
t
f

�
M�

m = 1

K �
�
m, t

f

�
≥ 2

⎡⎢⎢⎣

���� K �
�
m, t

f

�

K �
�
m, t

f

�
+ 1

dX
�
m, t

f

�⎤⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠

2

.

(24)E
[(

b
loc

)2
]
= E

[(
b

loc
− E

[
b

loc

])2
]
=

1

K �
Σ

2

loc
+ E2

[
b

loc

]
,

(25)

E

[
1

K �
− 1

K
�∑

k=1

(
dX − dX

k
)2

](
t
f

)

= E

[
K �

K �
+ 1

dX
2
](

t
f

)
− E2

[√
K �

K �
+ 1

dX

](
t
f

)

uncertainty r − r̄. This factor becomes important for the longer 
forecast times, at which �2

loc
 is typically large. The potential effects 

of this problem can be investigated by generating random samples 
of r, r

a
 and rk

f
 for a prescribed value of �2

loc
 and then verifying the 

sample based estimates of �2

loc
 by �2

loc
 and �2

loc
. Figure 3 summa-

rizes the results of a simulation experiment along this line for an 
idealized, one-dimensional search domain (the position vectors are 
scalars along a line) of length 2d, assuming that r

a
 is at the centre 

of the domain. The probability distribution of the location is as-
sumed to be Gaussian, except that the tails of the distribution are 
truncated at plus and minus two standard deviations of the Gauss-
ian distribution. The figure shows that once Σ

loc
 is larger than a 

critical value (about 0.29d), both σ
loc

 and δ
loc

 start to underestimate 
Σ

loc
, but the magnitude of the estimation error grows faster for δ

loc
 

than σ
loc

 as Σ
loc

 increases. We will make use of this finding in the 
analysis of the results on winter storms.

We have hitherto discussed the spread–skill relationship un-
der the assumption that the ensemble sampled the true prob-
ability distribution of the forecast uncertainty of the location. 
To relax this assumption, it is important to first notice that the 
spread–skill relationship depends on the quality of the predic-
tion of not only the variance, but also the mean of the proba-
bility distribution. In fact, as we have already discussed, sam-
pling errors in the estimate of the mean have an effect on the 
spread–skill relationship. The other form of error in the pre-
diction of the mean that we can account for in the spread–skill 
relationship is the forecast bias. In the presence of bias �

loc
≠ 0,  

Equation (22) can be replaced by

Fig. 3. The dependence of the prediction σ
loc

 and the estimate δ
loc

 on Σ
loc

 for a finite size search region.

Notes: The values shown are based on a randomly generated sample of 1000 realizations of r, r
a
, rk

f
, k = 1,… , 100, assuming a truncated Gaussian 

random distribution with mean r̄ = 0 in a one-dimensional search domain of size 2d. The values of Σ
loc

 on the x-axis are shown using the search 
radius d as unit, while the values of σ

loc
 and δ

loc
 on the y-axis are normalized by Σ

loc
.
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3. Data

The diagnostics are applied to 0.5° × 0.5° resolution, global, 
15-day long, twice daily, 20-member ensemble forecasts from 
the National Centers for Environmental Prediction (NCEP) of 
the US National Weather Service (NWS). The precipitation 
field at time t (e.g. 1200 UTC 2 January 2016) is defined by the 
accumulated precipitation for the 6-h period starting at time t. 
Because each of the 32 storms is present in multiple forecasts, 
the total number of verification cases considered is 133.

The search region for the estimation of the location error 
is 112 × 80 = 8960 grid points, which is about a region of 
4900 km × 4400 km. The location of the search region is ad-
justed for each case such that the verifying precipitation feature 
is in the middle of the search region. Selecting a larger search 
region would eliminate the potential problem illustrated by Fig. 
3, but the presence of multiple precipitation features in a larger 
search domain would also greatly complicate the implementa-
tion of the technique of Han and Szunyogh (2017).

The forecasts are verified against Stage IV precipitation anal-
yses, which are based on radar and gauge observations over the 
US (Lin and Mitchell, 2005). These analyses are estimates of 
the rainfall accumulation for approximately 4 km × 4 km pix-
els. Since the precipitation system of winter storms often ex-
tends over the ocean, where no Stage IV data are available, we 
use 0.5° × 0.5° resolution, calibrated short-term (6-h) forecasts 
from the European Centre for Medium Range Forecasts (ECM-
WF) to fill the gaps in the verification data. Only those cases are 
included in the statistics for which more than 30% of the total 
precipitation in the verification region is associated with Stage 
IV data. The latter criterion reduces the number of forecast cas-
es M from 133 to 83.

4. Results

4.1. The dependence of K ′ and M ′ on the forecast lead 
time

We start the examination of the results for the winter storms by 
an investigation of the typical number of ensemble members 
that predict the verifying storm. To be precise, we investigate 
the average of K �

(
m, t

f

)
, m = 1, 2,… , M, over the M = 83 fore-

cast cases (Fig. 4). As expected, the average K′ rapidly decreases 
with forecast time t

f
. In addition, the decrease is more rapid for 

the larger values of a, that is, when a higher degree of similarity 
is required between the forecast and the verifying precipitation 
to declare that they are likely to be related. The saturation value 
of the curves in the figure also strongly depends on a. Because 
the saturation of the curves indicates that K′ no longer depends 
on the initial conditions, the saturation value of the ratio K′/K is 
an estimate of the likelihood that a storm is found sufficiently 
similar to the verifying storm by pure chance rather than due to 
forecast skill. This likelihood decreases with the increase of the 

of the mean. Hence, flow dependent errors in the prediction of 
the mean can still lead to a breakdown of the modified spread–
skill relationship (Equation 25).

2.3. Amplitude uncertainty

While the focus of the present paper is on the verification of 
the location forecasts, we also show verification results for the 
amplitude forecasts to contrast the behaviour of the diagnos-
tics for the two forecast parameters. We describe the precipi-
tation amount (amplitude) associated with a weather event by 
the areal mean μ of the precipitation in the verification domain, 
that is, by the ratio of the total precipitation in the verification 
domain and the area of the verification domain. Similar to 
the position r, we treat μ as a random variable. Let �k

f

(
m, t

f

)
 (

k = 1, 2,… , K �
(
m, t

f

))
 be the areal mean of the precipitation 

in ensemble member k for forecast case m at forecast time t
f
, 

and �
a
(m) the areal mean of the precipitation in the verifying 

analysis.
The bias E

[
b

amp

]
 of the areal mean precipitation (amplitude 

bias), which is the expected value of the difference
 

between the mean �̄� = E[𝜇] and its ensemble-based prediction 
�

f
, can be estimated by

 

In addition, by analogy to the arguments made earlier for the 
location uncertainty, the ensemble-based estimate of the ampli-
tude uncertainty,
 

and the analysed uncertainty,
 

should be equal at any forecast time t
f
.

(26)b
amp

(
m, t

f

)
= �̄�

(
m, t

f

)
− 𝜇

f

(
m, t

f

)

(27)
�

amp

(
t
f

)
=

1

M �
(
t
f

)
M∑

m = 1

K �
(
m, t

f

)
≥ 2

b
amp

(
m, t

f

)
.

�
2

amp

�
t
f

�
=

1

M �
�
t
f

�
M�

m = 1

K �
�
m, t

f

�
≥ 2

⎡⎢⎢⎣
1

K �
�
m, t

f

�
− 1

K
�(m,t

f )�
k=1

�
�

k

f

�
m, t

f

�
− �

f

�
m, t

f

��2
⎤⎥⎥⎦
,

(28)

(29)

�
2

amp

(
t
f

)
=

1

M �
(
t
f

)
M∑

m = 1

K �
(
m, t

f

)
≥ 2

[
K �

(
m, t

f

)

K �
(
m, t

f

)
+ 1

(
�

a
(m) − �

f

(
m, t

f

))2

]
,
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After that, the magnitude of the zonal component gradually in-
creases until saturation at about forecast lead time day 9–10 at 
a level of about – 300 km. The negative sign indicates that the 
eastward propagation of the storms is faster in the forecasts than 
reality. This result is consistent with the findings of Herrera et 
al. (2016) and Loeser et al. (2017) that the operational ensemble 
forecasts of the leading prediction centres of the world have 
a slowly developing bias that results in an overly zonal large 
scale flow (a flow that does not have a realistic south–north 
meandering large-scale component) at the longer lead times in 
the forecasts: because the large-scale flow acts as a guide for 
the eastward propagating storms, the overly zonal large-scale 
flow leads to an unrealistically fast eastward propagation of the 
storms and their precipitation systems. This slowly developing 
forecast bias is an indication of systematic model errors.

Figure 7 shows the functions �
loc

(
t
f

)
, �

loc

(
t
f

)
, and �

loc

(
t
f

)
 after 

bias correction. There is a good agreement between �
loc

(
t
f

)
 and 

the bias-corrected �
loc

(
t
f

)
 up to about 6 days. Beyond that, σ

loc
 

becomes larger than both δ
loc

 and the bias corrected δ
loc

, which 
indicates that the sampling problem illustrated in Fig. 3 does 
indeed affect the results. The general shape of the curves indi-
cates a rapid chaotic growth of the forecast uncertainty before 
reaching saturation at about t

f
 = 11–14 days. This is the (abso-

lute) predictability time limit for the location of the storms, the 
time beyond which no storm can be predicted with an accuracy 
higher than the accuracy of a forecast based on climatology. It 
should be noted that the predictability time limit for a specific 
storm can be significantly shorter than the absolute predictabil-
ity time limit (e.g. Greybush et al., 2017).

The saturation level of Σ, which is an estimate of the cli-
matological value of the standard deviation of the distance be-
tween the locations of winter storms, can be estimated based 
on the results of Figs. 3 and 7. First, estimates of the saturation 
value of σ

loc
, 1015 km, and the bias-corrected value of �

loc

(
t
f

)
, 

626 km, can be obtained by a Lorenz-curve analysis (e.g. Han 
and Szunyogh, 2017). These estimates correspond to a ratio of 
1015/626 = 1.62 of the values along the two curves in Fig. 3, 
which yields an estimate of Σ = 1530 km.

The information that the ratio between the saturation values 
of the diagnostics is 1.62 can also be used to obtain numerical 
estimates of the effective search radius d and the critical value 
0.29d: the x-value that corresponds to the ratio of 1.62 in Fig. 
3 is Σ = 0.81d, which combined with the estimate 1530 km of 
Σ leads to d = 1886 km and 0.29d = 550 km. Notice that the 
estimate of d is somewhat smaller than half of the length of the 
verification region in either direction. This relation between the 
search radius and the size of the verification region is due to 
the property of the verification region that it has to include the 
entire forecast precipitation feature for an accurate estimation 
of the location error.

The good agreement between the three curves in Fig. 7 for 
the first six forecast days suggests that the ensemble forecasts 
provide accurate quantitative prediction of the uncertainty of 

required degree of similarity a between the forecast and the ver-
ifying precipitation event. In fact, the saturation value of K′/K 
can be reduced to zero by making the choice a = 0.9, but in that 
case, K′ < K even at initial time, which suggests that requiring 
such high degree of similarity between the forecast and the ver-
ifying precipitation field is unrealistic at the current level of 
modelling capabilities.

The decrease of the average of K ′
(
m, t

f

)
 with forecast time 

t
f
 suggests that M ′

(
m, t

f

)
 is also likely to decrease with the in-

crease of t
f
. This expectation is confirmed by the actual numbers 

(Fig. 5) that suggest that in order to maintain a sufficient sample 
size, a should be chosen not to be larger than a = 0.7. Because 
a = 0.7 is also the largest value of a for which K′ = K at anal-
ysis time (Fig. 4), we show the verification statistics for that 
particular value of a. We note, however, that we also carried out 
calculations for different values of a in the range from a = 0.6 
to a = 0.9, and found that the verification results were robust to 
the choice of a, except for the presence of a higher level of noise 
for the larger values of a. We also note that Han and Szunyogh 
(2017) found the verification statistics to be similarly robust to 
the choice of a for deterministic forecasts.

4.2. Location bias and uncertainty

For the operational forecasts, both components of the estimated 
location bias are negligible for the first four forecast days (Fig. 6). 

Fig. 4. Evolution of the average of K′ over all forecast cases for different 
values of a in the range from 0.6 to 0.9.

Fig. 5. Evolution of the percentage M′/M of the forecast cases for which 
K′ ≥ 2 for different values of a in the range from 0.6 to 0.9.



8 F. HAN ANd I. SZUNYOGH

place in the range from micrometres in the clouds to thousands 
of kilometres at the synoptic scales.

4.3. Amplitude bias and uncertainty

The evolution of the estimate of the amplitude bias β
amp

 (Fig. 8) 
indicates an initially rapidly and then slowly decreasing  
wet bias (over-prediction of the precipitation amount) in the 

the location of the storms. Because the uncertainty in the loca-
tion of the storms reflects uncertainty in the position of synoptic 
scale (∼1000 km) features of the atmospheric flow, our results 
indicate that the ensemble is highly efficient in capturing the 
uncertainty at the synoptic scales. As a counter-example to this 
behaviour, next we show that the ensemble is much less suc-
cessful in capturing the uncertainty in the multi-scale processes 
that determine the precipitation amount. These processes take 

Fig. 6. Top: the values of dV  for the individual ensemble forecasts (dark blue dots) and the evolution of the estimate of the meridional component of 
the location bias E

[
b

loc

]
 with the forecast lead time, bottom: the values of dU for the individual ensemble forecasts (dark blue dots) and the evolution 

of the estimate of the zonal component of the location bias E
[
b

loc

]
.

Fig. 7. The evolution of σ
loc

 (solid black), δ
loc

 (solid blue) and bias-corrected δ
loc

 (dashed blue) with the forecast lead time.
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clusion that the root of the initially large forecast errors and 
poor ensemble performance is primarily not a problem with 
the model climatology. This result calls for further research 
into the analysis and the generation of initial condition per-
turbations of moist model variables, for instance, by testing 
stochastic parameterization schemes and convective-allow-
ing models in ensemble forecasting (e.g. Palmer et al., 2009; 
Khouider et al., 2010; Bengtsson and Körnich, 2016; Greybush 
et al., 2017).

5. Conclusions

In this paper, we introduced a morphing-based ensemble forecast 
verification technique for the location of precipitation events. We 
demonstrated the skill and the limitations of the technique with 
an application to operational ensemble forecasts of US winter 
storms. The results of this application suggest that the operational 
ensemble forecasts provide reliable forecasts of the uncertainty in 

forecasts, which completely disappears after about 13 days. 
The strong initial adjustment in the precipitation, which indi-
cates that the model initial conditions are in the basin of attrac-
tion of the “attractor of the model dynamics”, but not exactly 
on the “attractor” (called “spin-up” in the numerical weather 
prediction jargon), has been a longstanding issue of numerical 
weather prediction. The fact that the wet bias eventually disap-
pears as forecast time increases suggests that it is more likely 
to be due to problems with the initial conditions of the moist 
variables than systematic model errors. The relatively large in-
itial value of �

amp

(
t
f

)
 also points to the initial conditions as the 

primary source of the amplitude forecast error in the first few 
forecast days. The ensemble spread �

amp

(
t
f

)
, which predicts 

initially small and then rapidly growing amplitude errors, fails 
to capture the large initial errors, leading to an initially poor, 
but gradually improving ensemble performance. The fact that 
at the longer forecast lead times there is a much better general 
agreement between �

amp

(
t
f

)
 and �

amp

(
t
f

)
 also supports the con-

Fig. 8. Top: the values of �
a
− �

f
 for the individual ensemble forecasts (dark blue dots) and the evolution of the estimate of the amplitude bias 

E
[
b

amp

]
 with the forecast lead time, bottom: the evolution of σ

amp
 (solid black), δ

amp
 (solid blue) and bias-corrected δ

amp
 (dashed blue) with the forecast 

lead time.
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the location of the storms, except for a slowly developing system-
atic error that leads to an unrealistically fast eastward propagation 
of the storms in the week-two forecasts. We contrasted the good 
performance of the ensemble in predicting the uncertainty in storm 
location to its poor performance in predicting the uncertainty of the 
precipitation amount in the short (less than 5 days) forecast range.

The most important limitation of the proposed verification 
technique in its present form is that it treats all precipitation in 
the verification region as part of single precipitation system. 
This makes the careful selection of the verification region a crit-
ical part of the implementation of the technique and it may lead 
to spurious results in situations where there are multiple, equal-
ly important, isolated features in the verification region (e.g. 
precipitation associated with multiple isolated convective sys-
tems). In light of these limitations, we view the current version 
of the technique as a highly useful research and development 
tool rather than a technique ready for an automated implemen-
tation for the routine verification of forecasts.
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Notes

 1.  While the practice of naming winter storms is controversial, the 
collection of named storms provides a representative sample of 
precipitation events that a major player of the US weather enterprise 
expected to have potentially high impact on society.

 2.  For instance, for an idealized precipitation field with a regular 
shape, r could be defined by the centre of mass of the precipitation 
field. It should be noted, however, that for a complex precipitation 
field, the estimate of the location error by our technique is not 
necessarily equal to the error in the location of the centre of mass 
(Han and Szunyogh, 2016).
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