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How well can an ensemble predict the uncertainty in
the location of winter storm precipitation?

By FAN HAN* and ISTVAN SZUNYOGH, Department of Atmospheric Sciences, Texas A&M University,
College Station, TX, USA

(Manuscript received 3 October 2017; in final form 11 February 2018)

ABSTRACT
A pair of morphing-based ensemble forecast diagnostics is proposed for the verification of the location of precipitation
events. The diagnostics are applied to operational global ensemble forecasts of winter storms in the United States in
the winters of 2014/2015 and 2015/2016. A slowly developing systematic error is found to lead to an unrealistically
fast eastward propagation of the storms in the week-two forecasts. Apart from this systematic error, the forecasts
predict the uncertainty in the location of the precipitation events reliably. They, however, also grossly underestimate

the uncertainty of the amount of precipitation in the short (shorter than 5 days) forecast range.

Keywords: ensemble verification, precipitation, morphing, winter storm

1. Introduction

The predictability of a chaotic dynamical system is measured
by the temporal growth of the magnitude of the errors in pre-
dictions of the system. For an Eulerian scalar state variable of
a spatio-temporally chaotic system, the standard measure of
the magnitude of the prediction error is the root-mean-square
(rms) error, with the mean taken over the spatial domain of
the system. The use of the rms error as the measure of predic-
tion error, however, is problematic for a scalar state variable
of sharp gradients, because for such a variable, the rms error
indicates a rapid loss of predictability once the dominant fea-
tures of the field become slightly misplaced. Intuition suggests
that a proper error measure should indicate that the error is a
small displacement of the dominant features. More generally,
the measure should provide information about the magnitude of
the displacement error, and also the errors in the amplitude and
spatial structure of the dominant features.

An example for a scalar field of the aforementioned type is
the precipitation field associated with an extratropical or tropi-
cal cyclone, whose evolution is driven by the spatio-temporally
chaotic, multi-scale dynamics of the atmosphere, which organ-
izes it into bands with sharp boundaries and a rich and rapidly
changing structure within the bands (Fig. 1). If the precipita-
tion bands are slightly misplaced in a forecast, the rms error
indicates poor forecast quality, even if the precipitation field is
otherwise well predicted.

The error in the prediction of a precipitation event can be
characterized, at minimum, by three error components: the
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errors in the location, amplitude (amount) and structure of the
predicted precipitation (e.g. Wernli et al., 2008). Motivated by
the work of Keil and Craig (2007, 2009) on morphing-based pre-
cipitation verification techniques and a series of papers on digi-
tal image quality measures (Wang and Bovik, 2002; Wang et al.,
2004; Wang and Bovik, 2009), we have developed a technique to
estimate the three error components in deterministic precipitation
forecasts (Han and Szunyogh, 2016, 2017). The goal of the pres-
ent study is to extend our technique for the estimation of the loca-
tion error component to ensemble forecasts. In particular, we de-
rive diagnostics for the estimation of the systematic location error
and the verification of the “spread-skill relationship” (e.g. Buizza,
1997) for the location. We apply the two diagnostics to opera-
tional global ensemble forecasts of the 32 United States winter
storms that were named by The Weather Channel in the winters of
2014/2015 and 2015/2016.! We note that a recent study (Greybush
et al., 2017) based on the examination of forecasts of two of the
storms from the same winters showed the importance of using the
ensemble approach for the prediction of winter storms.

2. Methodology

We assume that the location of a precipitation event can be de-
scribed by a two-dimensional vector of location r. While the
verification technique we propose does not require the knowl-
edge or estimation of r, the assumption that the position of the
event can be described by a single location r makes its justi-
fication more transparent.”> Because we consider r a random
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Fig. 1. An example of a slightly misplaced forecast precipitation field.
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Notes: The forecast field (left) is the 24-h forecast of the 1-h accumulated precipitation starting at 0000 UTC 1 June 2005 and the verifying analysis
field (right) is the 1-h accumulated Stage II precipitation analysis. In the left panel, the grey shades indicate the contours of the verifying precipitation

field.

variable, the position r, of the event in the verifying analysis
is a realization of r. Likewise, the positions rf k=1,2...,K)
of the event in the K forecast ensemble members are also real-
izations of r.

Consider a set of verification cases, in which subsets of cases
may be related to the same weather event at different verifi-
cation times. Let M be the total number of verification cases.
For each verification case m(m = 1, 2, ..., M), we consider all
ensemble forecasts from an archived data-set that are valid at
the (verification) time of the case. While there are different lead
time forecasts for each case, not all ensemble members predict
a storm at each lead time. We therefore introduce the notation
K’(m, tf), K'(m, 4
that at lead time tf include a precipitation event that may be

) < K, for the number of ensemble members

related to winter storm m(m = 1,2, ... ,M). (We will give a for-
mal definition of “may be related” shortly.) Our goal is to verify
the ensemble-based prediction of the mean and standard devia-
tion of the conditional probability distribution of r subject to the
condition that the forecast verification feature may be related to
an observed winter storm.

Our task has two parts. First, we have to identify the en-
semble members that include a precipitation event that may
be related to a verifying event. Second, we have to verify the
ensemble-based estimates of the statistical parameters of the
conditional probability distribution of r for the collection of
cases that we identify. The only information available to us at
the beginning of the process is the knowledge of the fields of
verifying precipitation data P“(m)(m = 1,2, ..., M) in a search
region, which is selected such that the verifying event is at
about its centre, and the related K-member ensembles of fore-
cast precipitation fields P* (m, tf)(k =12,...,K).

We use the technique of Han and Szunyogh (2017) to first
find a shift vector dX* (m, )= (dUk(m, 1), av¥k(m, tf)) for each
ensemble member k, forecast case m and lead time 1 that cor-
rects the location error. (dU*(im, t,) and dV*(m, tf) are the zonal
and meridional component of dX*(m, 1;), respectively.) For-
mally, the shift vector that “corrects the location error” is the
vector that shifts P*(m, tf) such that it maximizes the similarity
between P%(m) and the shifted P<(m, zf) field, Pfhiﬁ(m, tf)‘ We
think of dX*(m, r,) as the difference between the location r, (m)
of the verifying precipitation feature and the predicted location
rj‘.(m, 1) (k=1,2,...,K) of the same feature in ensemble mem-
ber k, that is,

ka(m, tf) =r,(m)— rl;(m,t

f),k=1,2,...,K. 1)

We measure the similarity between P“(m) and Pfhifw ., tf) by
the Amplitude and Structural Similarity Index Measure (AS-
SIM) (Han and Szunyogh, 2017), which is an adaptation of
the Structural Similarity Index Measure (SSIM) of Wang et
al. (2004) and Wang and Bovik (2009). We choose the free
parameters of the measure such that it gives equal weights to
the similarity of the amplitude, the similarity of the spatial
variability and the point-wise correlation of the two fields.
ASSIM takes a value in the closed interval [0, 1], with one
indicating identical fields and a lower value indicating less
similarity between the two fields. We assume that the precipi-
tation feature of ensemble member k “may be related to” win-
ter storm m, if ASSIM for P‘(m) and P*

shift
or larger than a prescribed threshold value a. K’ (m, zf) there-

(m, tf) is equal to,

fore is the number of ensemble members for forecast case
m(m =1,2,...,M) and forecast lead time 1 for which ASSIM
is larger than a.
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We expect K’ (m t ) to be a monotonically decreasing func-
tion of the forecast lead time 7, and require that K’ (m,1,) > 2
for all forecast cases used in the computation of the dlagnostlcs
at 1. We denote the number of forecast cases that satisfy the
latter condition by M’ (t, ). Estimates of the statistics based on
such small ensemble sizes can be included in the diagnostics,
because while the sampling errors (the estimation errors due
to a small ensemble) can be large for a particular case m and
lead time i the expected value and the standard deviation of
the sampling errors are known from the theory of statistics even
for such small sample sizes. In particular, if the ensemble mem-
bers r;(k =1,2,...,K") sample the true distribution of r, the
ensemble average

K

ry @

k=1

Fo L

f K’

estimates the (unknown) true mean 7 = E[r] of the distribution
with an error

b, =F—r. 3)
whose mean is
E[b,]1=0 @
and mean-square is
2 1
E[<b1{)c) ] = E[( loc E[bloc] ] ;Elzoc (5)
Here,
2 =E[r-7°
loc [( ] (6)

is the (unknown) true variance of r. Hereafter, E[-] denotes the
expected value of the random variable in the brackets. In our
proposed diagnostics, this expected value is estimated by an av-
erage over the M’ (1, ) verification cases.

Taking the ensemble mean of Equation (1) yields

dX (m1;) =r,(m) =¥, (m.1;), ™
where
—_— 1 K
dX(m,t,) = ——— dx*(m,zt.).
(m tf) K (m, tf) ; (m tf) 8)

According to Equation (7), dX = (dU,dv
between a realization r, of r and the prediction r_f of the mean 7.
Equation (7) can also be written in the equivalent form

) is the difference

X (m,1;) = €,,.(m.1,) + b, (m.1,), ©)

where

eloc (m’ tf) = ra(m) - r(m’ tf) (10)

is a realization of the random Variable r — r, which we call the

location uncertainty. Notice that X, describes the magnitude

lm
of the location uncertainty (see Equation 6).

Ideally, the ensemble should sample the true probability dis-
tribution of the forecast variables given all sources of forecast
uncertainty. Because this property cannot be verified directly
(Talagrand et al., 1999), ensemble verification techniques ex-
amine necessary conditions for it. We follow this approach by
deriving diagnostic equations that the ensemble forecasts would
satisfy at forecast lead time 7, if the ensemble sampled the true

probability distribution of the forecast uncertainty.

2.1. Location bias

Because r, is a realization of r,

Ele,](m.t) =E[r, = 7| (m.1;) =0 (11

and the expected value of Equation (9) is
Efb,] (m.1,) = E[aX] (m.1,). (12)

Hence, the estimate

1 Y @(m)

M (tf) m=1 (13)
K'(m,1,) >2

ﬁlor(tf) =

of the right-hand side of Equation (12) is also an estimate of
the location bias E [b,m](t )- By, ( ) is an unbiased estimate of
the location bias, because Equatlon (4) also applies if b
replaced by dX (m, 7).

loc

2.2.  Spread-skill relationship

The spread—skill relationship diagnostic of ensemble forecast-
ing takes advantage of the statistical relationship between the
ensemble variance and the difference between the verifying
data and the ensemble mean: the expected value of the ensem-
ble variance and the expected value of the square of the dif-
ference between the verifying data and the ensemble mean are
both estimates of sz
tionship with the help of the ensemble of shift vectors.

Our goal is to formally express this rela-

Making use of Equations (1) and (7) yields

(4 =7) (m.t,) = (r, —ax* +aX —r, ) (m.1,)
f f f) T Ve a '

= (ax* —d_X)z(m,tf).

Thus, the expected value of the ensemble variance of the loca-

(14)

tion can be expressed by the expected value of the ensemble
variance of the shift vectors as

| S -7 | )= B (@ |

15)
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The expected value of the square of the difference between the
verifying data and the ensemble mean can be expressed with
the help of the shift vectors by taking the expected value of the
square of Equation (7), which leads to

= E[d_Xz] (zf)

(16)

In addition,

E(r,=5)| () = E|r=7)"] (1) = E] (0 =P +8,.)7] (1.

a7

Because at this point we assume that the estimation error b

loc

of the mean 7 is purely due to sampling errors, making use of
Equations (5) and (6) leads to

K'+1

2
2 X

lnc

leoc( )
(18)

E[ r—r)+b,[,c)]( )= +E[ loc ](tf)

First, combining Equations (17) and (18) and then making use
of Equation (16) yields

K/

7| ) =

Because the left-hand side of Equation (15) is a prediction-based

K/
) = B i 7

ax [ (1).(19)

estimate of X2

loc?

for a perfectly formulated ensemble, the right-
hand side of Equation (15) would be equal to the right-hand
side of Equation (19); that is, we would find that

K 2
E [ﬁ 3 (dX" —ﬁ)

k=1

K/
K +1

ax |(1). o)

)=z

The left-hand side is the “ensemble spread” of the forecast
location and the right-hand side is the deterministic “forecast

skill” (mean-square error) of the ensemble mean forecast. The
expected values in Equation (20) can be estimated by taking
averages over the sample of M forecast cases. That is,

K'(miy) )
> (ax*(m1) —dx(m.1,)) }

k=1

< 1
) b [K’(m,r_/)—l

is an estimate of the left-hand side and

) 1 M K’(m,t) _
5[00( ) M'(tf) ZZ:I [K'(m—tf)f-l-ldx (m,tf):|
K'(m,tf) >2

(22)

is an estimate of the right-hand side of Equation (20). The fac-
tor K'/(K' + 1) on the right-hand side of Equation (20) may seem
unusual, because in the ensemble forecasting literature the ef-
fects of sampling errors caused by the limited number of en-
semble members on the spread—skill relationship is rarely con-
sidered. The omission of the normalization factor introduces
only small errors into the estimate of the “skill” for the typical
number (>20) of ensemble members (Fig. 2). What makes our
situation special is that we allow for such small values of K’ as
2, for which the normalization factor is K'/(K' + 1) =2/3 ~ 0.67,
which is significantly smaller than 1.

There is one additional issue that can affect the spread—skill re-
lationship in the specific case of our morphing based verification
technique, even if the ensemble correctly samples the true proba-
bility distribution: because the size of the search region limits the
magnitude of the location error that the technique of Han and Szu-
nyogh (2017) can detect, r" - r and r, —r; is not always able to

f
fully sample the tails of the probablllty distribution of the forecast

1.5

1.3

2 2
J /UIOC
Ve

2
loc

1.2}

$

with K'/(K'+1) ||
with 1

Lo j_ 3
T .
: : : ¢+ l I e
i ‘ L HREN
tothp bbb bbb e
1 1 | 1 1 1 hd 1 1 1 1 hd 14
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K’

Fig. 2. Ilustration of the effect of the normalization factor K'/(K' + 1) on the ratio of the estimates of the right- and left-hand sides of Equation (20).

Notes: The values shown are based on randomly generated samples of 10, 000 realizations of r, r , r

” ;,k =1,....K, assuming a Gaussian random

distribution with mean 7 = 0. Because of the sampling fluctuations, the simulation is repeated 10 times for each value of K’ and the results are shown

by scatter-plots.
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Fig. 3. The dependence of the prediction ¢, and the estimate 3, on X, for a finite size search region.

Notes: The values shown are based on a randomly generated sample of 1000 realizations of r, r,, rf, k=1,...,100, assuming a truncated Gaussian

random distribution with mean 7 = 0 in a one-dimensional search domain of size 2d. The values of X, on the x-axis are shown using the search

radius d as unit, while the values of o

loc

uncertainty r — 7. This factor becomes important for the longer
forecast times, at which X?

loc

is typically large. The potential effects
of this problem can be investigated by generating random samples
of r,r, and ij’; for a prescribed value of >

loc

and then verifying the
by &2 and 0',2,)[:. Figure 3 summa-

loc

sample based estimates of X7
rizes the results of a simulation experiment along this line for an
idealized, one-dimensional search domain (the position vectors are
scalars along a line) of length 2d, assuming that r_ is at the centre
of the domain. The probability distribution of the location is as-
sumed to be Gaussian, except that the tails of the distribution are
truncated at plus and minus two standard deviations of the Gauss-
ian distribution. The figure shows that once 2,  is larger than a
critical value (about 0.29d), both 5, and 610[ start to underestimate
2. but the magnitude of the estimation error grows faster for 6,
than g, as 2, increases. We will make use of this finding in the
analysis of the results on winter storms.

We have hitherto discussed the spread—skill relationship un-
der the assumption that the ensemble sampled the true prob-
ability distribution of the forecast uncertainty of the location.
To relax this assumption, it is important to first notice that the
spread—skill relationship depends on the quality of the predic-
tion of not only the variance, but also the mean of the proba-
bility distribution. In fact, as we have already discussed, sam-
pling errors in the estimate of the mean have an effect on the
spread—skill relationship. The other form of error in the pre-
diction of the mean that we can account for in the spread—skill
relationship is the forecast bias. In the presence of bias g, . # 0,
Equation (22) can be replaced by

and 0 o ON the y-axis are normalized by Z,

oc*

M ’
1 K(m’tf) —=2
82 = ,
lor([f) M((tf) Z K’(m,tf)+l (m tf)
m=
K'(m,tf) >2
2
1 M
TOED>
(tf) m=1
K'(m.t;) 22

(23)

This equation can be obtained by noticing that in the presence
of bias, Equation (5) becomes

E[(blnc)z] = E[<bloc - E[bloc])z] = %leoc +E [blr)C]’ 249

thus leading to the modified version

k=1

K == 5 K —
=E dXx —E dX
[K’+1 ](tf) [ K +1 ](

E [ﬁ i (ax - dX")Z] (1,)

(25)

of Equation (20). It is important to notice that Equation (23) ac-
counts only for the systematic part of the error in the prediction
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of the mean. Hence, flow dependent errors in the prediction of
the mean can still lead to a breakdown of the modified spread—
skill relationship (Equation 25).

2.3.  Amplitude uncertainty

While the focus of the present paper is on the verification of
the location forecasts, we also show verification results for the
amplitude forecasts to contrast the behaviour of the diagnos-
tics for the two forecast parameters. We describe the precipi-
tation amount (amplitude) associated with a weather event by
the areal mean y of the precipitation in the verification domain,
that is, by the ratio of the total precipitation in the verification
domain and the area of the verification domain. Similar to
the position r, we treat u as a random variable. Let yf]f (m, tf)
(k =12,....K (m, tf)) be the areal mean of the precipitation
in ensemble member k for forecast case m at forecast time 1
and p (m) the areal mean of the precipitation in the verifying
analysis.

The bias £ [bamp] of the areal mean precipitation (amplitude
bias), which is the expected value of the difference

by (mat;) = (m, 1) = (m.1;) (26)

between the mean g = E[u] and its ensemble-based prediction
,u_f, can be estimated by

by (m,tf) .
/ m=1 @7
K'(m,1,) 22

In addition, by analogy to the arguments made earlier for the
location uncertainty, the ensemble-based estimate of the ampli-
tude uncertainty,

M
1
Ty (1) () 21
m =
K'(m,1,) 22 (28)
1 K'(m.t;) . o )
K ()1 kz::, (k7 (m.1,) =y (m. 1)) |

and the analysed uncertainty,

M

1
5jmp(zf) =MI( ) Z
K (i 29)

K/(m, tf)

J— 2
W(Ma(m)_ Hy(m.1))" |

should be equal at any forecast time L.

3. Data

The diagnostics are applied to 0.5° x 0.5° resolution, global,
15-day long, twice daily, 20-member ensemble forecasts from
the National Centers for Environmental Prediction (NCEP) of
the US National Weather Service (NWS). The precipitation
field at time 7 (e.g. 1200 UTC 2 January 2016) is defined by the
accumulated precipitation for the 6-h period starting at time .
Because each of the 32 storms is present in multiple forecasts,
the total number of verification cases considered is 133.

The search region for the estimation of the location error
is 112 x 80 = 8960 grid points, which is about a region of
4900 km x 4400 km. The location of the search region is ad-
justed for each case such that the verifying precipitation feature
is in the middle of the search region. Selecting a larger search
region would eliminate the potential problem illustrated by Fig.
3, but the presence of multiple precipitation features in a larger
search domain would also greatly complicate the implementa-
tion of the technique of Han and Szunyogh (2017).

The forecasts are verified against Stage IV precipitation anal-
yses, which are based on radar and gauge observations over the
US (Lin and Mitchell, 2005). These analyses are estimates of
the rainfall accumulation for approximately 4 km x 4 km pix-
els. Since the precipitation system of winter storms often ex-
tends over the ocean, where no Stage IV data are available, we
use 0.5° x 0.5° resolution, calibrated short-term (6-h) forecasts
from the European Centre for Medium Range Forecasts (ECM-
WEF) to fill the gaps in the verification data. Only those cases are
included in the statistics for which more than 30% of the total
precipitation in the verification region is associated with Stage
IV data. The latter criterion reduces the number of forecast cas-
es M from 133 to §3.

4. Results

4.1. The dependence of K' and M' on the forecast lead
time

We start the examination of the results for the winter storms by
an investigation of the typical number of ensemble members
that predict the verifying storm. To be precise, we investigate
the average ofK’(m, tf),m =1,2,...,M, over the M = 83 fore-
cast cases (Fig. 4). As expected, the average K’ rapidly decreases
with forecast time t.In addition, the decrease is more rapid for
the larger values of a, that is, when a higher degree of similarity
is required between the forecast and the verifying precipitation
to declare that they are likely to be related. The saturation value
of the curves in the figure also strongly depends on a. Because
the saturation of the curves indicates that K’ no longer depends
on the initial conditions, the saturation value of the ratio K'/K is
an estimate of the likelihood that a storm is found sufficiently
similar to the verifying storm by pure chance rather than due to
forecast skill. This likelihood decreases with the increase of the
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Fig. 4. Evolution of the average of K’ over all forecast cases for different
values of a in the range from 0.6 to 0.9.

required degree of similarity a between the forecast and the ver-
ifying precipitation event. In fact, the saturation value of K'/K
can be reduced to zero by making the choice a = 0.9, but in that
case, K' < K even at initial time, which suggests that requiring
such high degree of similarity between the forecast and the ver-
ifying precipitation field is unrealistic at the current level of
modelling capabilities.

The decrease of the average of K’ (m, t/) with forecast time
1, suggests that M ’(m, tf) is also likely to decrease with the in-
crease of 1, This expectation is confirmed by the actual numbers
(Fig. 5) that suggest that in order to maintain a sufficient sample
size, a should be chosen not to be larger than @ = 0.7. Because
a = 0.7 is also the largest value of a for which K’ = K at anal-
ysis time (Fig. 4), we show the verification statistics for that
particular value of a. We note, however, that we also carried out
calculations for different values of « in the range from a = 0.6
to a = 0.9, and found that the verification results were robust to
the choice of a, except for the presence of a higher level of noise
for the larger values of a. We also note that Han and Szunyogh
(2017) found the verification statistics to be similarly robust to
the choice of a for deterministic forecasts.

4.2.  Location bias and uncertainty

For the operational forecasts, both components of the estimated
location bias are negligible for the first four forecast days (Fig. 6).

100
N A Y nAVAV S NG
80 \\/ _\/\/\/\/\/\/\ A AA \/_
MR A VNS LY Ya
R 60 S
S X” \ o~
=
NERN M

00 1 2 3 45 6 7 8 9101112131415
Forecast Day

Fig. 5. Evolution of the percentage M'/M of the forecast cases for which

K' > 2 for different values of a in the range from 0.6 to 0.9.

After that, the magnitude of the zonal component gradually in-
creases until saturation at about forecast lead time day 9—-10 at
a level of about — 300 km. The negative sign indicates that the
eastward propagation of the storms is faster in the forecasts than
reality. This result is consistent with the findings of Herrera et
al. (2016) and Loeser et al. (2017) that the operational ensemble
forecasts of the leading prediction centres of the world have
a slowly developing bias that results in an overly zonal large
scale flow (a flow that does not have a realistic south-north
meandering large-scale component) at the longer lead times in
the forecasts: because the large-scale flow acts as a guide for
the eastward propagating storms, the overly zonal large-scale
flow leads to an unrealistically fast eastward propagation of the
storms and their precipitation systems. This slowly developing
forecast bias is an indication of systematic model errors.
Figure 7 shows the functions Cloe (tf ), e (tf ), and g, (tf) after
bias correction. There is a good agreement between o-,m,(t ) and

f
the bias-corrected 5100(1}) up to about 6 days. Beyond that, o

loc
becomes larger than both J,  and the bias corrected J, , which
indicates that the sampling problem illustrated in Fig. 3 does
indeed affect the results. The general shape of the curves indi-
cates a rapid chaotic growth of the forecast uncertainty before
reaching saturation at about #, = 11-14 days. This is the (abso-
lute) predictability time limit for the location of the storms, the
time beyond which no storm can be predicted with an accuracy
higher than the accuracy of a forecast based on climatology. It
should be noted that the predictability time limit for a specific
storm can be significantly shorter than the absolute predictabil-
ity time limit (e.g. Greybush et al., 2017).

The saturation level of X, which is an estimate of the cli-
matological value of the standard deviation of the distance be-
tween the locations of winter storms, can be estimated based
on the results of Figs. 3 and 7. First, estimates of the saturation
value of g, , 1015 km, and the bias-corrected value of 5100(%‘/ ),
626 km, can be obtained by a Lorenz-curve analysis (e.g. Han
and Szunyogh, 2017). These estimates correspond to a ratio of
1015/626 = 1.62 of the values along the two curves in Fig. 3,
which yields an estimate of 2'= 1530 km.

The information that the ratio between the saturation values
of the diagnostics is 1.62 can also be used to obtain numerical
estimates of the effective search radius d and the critical value
0.29d: the x-value that corresponds to the ratio of 1.62 in Fig.
3is 2'=0.81d, which combined with the estimate 1530 km of
2 leads to d = 1886 km and 0.29d = 550 km. Notice that the
estimate of d is somewhat smaller than half of the length of the
verification region in either direction. This relation between the
search radius and the size of the verification region is due to
the property of the verification region that it has to include the
entire forecast precipitation feature for an accurate estimation
of the location error.

The good agreement between the three curves in Fig. 7 for
the first six forecast days suggests that the ensemble forecasts
provide accurate quantitative prediction of the uncertainty of
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Fig. 6. Top: the values of dV for the individual ensemble forecasts (dark blue dots) and the evolution of the estimate of the meridional component of
the location bias E [b o
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Fig. 7. The evolution of g, _(solid black), J, (solid blue) and bias-corrected ,, (dashed blue) with the forecast lead time.
the location of the storms. Because the uncertainty in the loca- place in the range from micrometres in the clouds to thousands

tion of the storms reflects uncertainty in the position of synoptic of kilometres at the synoptic scales.
scale (~1000 km) features of the atmospheric flow, our results
indicate that the ensemble is highly efficient in capturing the
uncertainty at the synoptic scales. As a counter-example to this
behaviour, next we show that the ensemble is much less suc-  The evolution of the estimate of the amplitude bias 8, (Fig. 8)
cessful in capturing the uncertainty in the multi-scale processes indicates an initially rapidly and then slowly decreasing
that determine the precipitation amount. These processes take ~ Wwet bias (over-prediction of the precipitation amount) in the

4.3.  Amplitude bias and uncertainty
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forecasts, which completely disappears after about 13 days.
The strong initial adjustment in the precipitation, which indi-
cates that the model initial conditions are in the basin of attrac-
tion of the “attractor of the model dynamics”, but not exactly
on the “attractor” (called “spin-up” in the numerical weather
prediction jargon), has been a longstanding issue of numerical
weather prediction. The fact that the wet bias eventually disap-
pears as forecast time increases suggests that it is more likely
to be due to problems with the initial conditions of the moist
variables than systematic model errors. The relatively large in-
itial value of 5, (tf) also points to the initial conditions as the
primary source of the amplitude forecast error in the first few
forecast days. The ensemble spread o-amp(tf), which predicts
initially small and then rapidly growing amplitude errors, fails
to capture the large initial errors, leading to an initially poor,
but gradually improving ensemble performance. The fact that
at the longer forecast lead times there is a much better general
agreement between o, (t,) and 6,,, (#,) also supports the con-

(solid black), 0

(solid blue) and bias-corrected

amp

(dashed blue) with the forecast

amp

clusion that the root of the initially large forecast errors and
poor ensemble performance is primarily not a problem with
the model climatology. This result calls for further research
into the analysis and the generation of initial condition per-
turbations of moist model variables, for instance, by testing
stochastic parameterization schemes and convective-allow-
ing models in ensemble forecasting (e.g. Palmer et al., 2009;
Khouider et al., 2010; Bengtsson and Kornich, 2016; Greybush
et al., 2017).

5. Conclusions

In this paper, we introduced a morphing-based ensemble forecast
verification technique for the location of precipitation events. We
demonstrated the skill and the limitations of the technique with
an application to operational ensemble forecasts of US winter
storms. The results of this application suggest that the operational
ensemble forecasts provide reliable forecasts of the uncertainty in
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the location of the storms, except for a slowly developing system-
atic error that leads to an unrealistically fast eastward propagation
of the storms in the week-two forecasts. We contrasted the good
performance of the ensemble in predicting the uncertainty in storm
location to its poor performance in predicting the uncertainty of the
precipitation amount in the short (less than 5 days) forecast range.

The most important limitation of the proposed verification
technique in its present form is that it treats all precipitation in
the verification region as part of single precipitation system.
This makes the careful selection of the verification region a crit-
ical part of the implementation of the technique and it may lead
to spurious results in situations where there are multiple, equal-
ly important, isolated features in the verification region (e.g.
precipitation associated with multiple isolated convective sys-
tems). In light of these limitations, we view the current version
of the technique as a highly useful research and development
tool rather than a technique ready for an automated implemen-
tation for the routine verification of forecasts.
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Notes

1. While the practice of naming winter storms is controversial, the
collection of named storms provides a representative sample of
precipitation events that a major player of the US weather enterprise
expected to have potentially high impact on society.

2. For instance, for an idealized precipitation field with a regular
shape, r could be defined by the centre of mass of the precipitation
field. It should be noted, however, that for a complex precipitation
field, the estimate of the location error by our technique is not
necessarily equal to the error in the location of the centre of mass
(Han and Szunyogh, 2016).
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